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Abstract
We develop a model for the reflection and transmission of plane waves by an isotropic layer
sandwiched between two uniaxial crystals of arbitrary orientation. In the laboratory frame,
reflection and transmission coefficients corresponding to the principal polarization directions in
each crystal are given explicitly in terms of the ĉ axis and propagation directions. The solution
is found by first deriving explicit expressions for reflection and transmission amplitude
coefficients for waves propagating from an arbitrarily oriented uniaxial anisotropic material into
an isotropic material. By combining these results with Lekner’s (1991 J. Phys.: Condens.
Matter 3 6121–33) earlier treatment of waves propagating from isotropic media to anisotropic
media and employing a matrix method we determine a solution to the general form of the
multiple reflection case. The example system of a wetted interface between two ice crystals is
used to contextualize the results.

1. Introduction

Since the time of Descartes scientists have taken an interest in
the physical properties of ice (Dash et al 2006). For example,
Tyndall (1856) observed harvested ice in some detail, but
it was not for almost another hundred years, when Nakaya
(1954) began cataloging observations of snowflakes, that well-
controlled laboratory growth experiments on single crystals
began. More recently, motivated by the fact that commonly
occurring environmental temperatures span the triple point of
ice, a strong understanding of the thermodynamics and phase
behavior of polycrystalline ice near its melting temperature has
been developed. It is known that, near the melting temperature,
an interconnected network of liquid water exists within the
polycrystalline solid (Nye and Frank 1973). Under hydrostatic
conditions, veins of water separate the boundaries between
three crystals and join in nodes where four grains meet. The
Gibbs–Thomson and impurity effects are responsible for the
presence of this liquid (Dash et al 2006), which is observed
using optical microscopy techniques (Mader 1992, Walford
et al 1987). Additional water structures, such as water lenses,
are observed in the presence of non-hydrostatic stresses (Nye
1991). Less well understood is what happens away from

these junctions in the planar interface between two single
crystals. While disorder is expected at the molecular scale, it is
predicted that a dopant, such as salt, can induce the formation
of a thick (>10 nm), essentially bulk, water film (Benatov
and Wettlaufer 2004). This phenomenon of interfacial melting
could have important implications for ice’s electrical and
mechanical properties and impurity redistribution in glaciers
and polar ice (e.g. Rempel et al 2002). More generally, it may
occur in other polycrystalline materials. Recent predictions of
interfacial melting at ice grain boundaries have motivated an
experimental search (Thomson et al 2005) to detect the water
layer using an optical reflection technique. This has led us
to consider the theoretical formalism for wave reflection and
transmission in an anisotropic/isotropic/anisotropic layered
system; specifically when the anisotropic media are uniaxial
crystals.

Uniaxial crystals are scientifically well-studied materials
owing to their ubiquity in nature and their many technical
applications, including use as elements in optical systems.
Theoretical treatments of light propagation in these crystals
have focused on reflection from surfaces and the internal
propagation through layered structures. Previous studies have
used 4 × 4 or 2 × 2 matrix methods to solve the general
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Figure 1. (a) The general geometry of the three-layer system. Plane wave propagation is illustrated with rays, enlarged schematics of the
boxed interface regions are shown in (b) and (c) and in l3 an example crystal is inset. The ĉ-axis direction of the example crystal is labeled
with respect to the laboratory frame of reference. Here θα is the angle between ĉ and x̂ , θβ is the angle between ĉ and ŷ, and θγ is the angle
between ĉ and ẑ. (b) Schematic of an o wave incident on an anisotropic/isotropic boundary, where K is the preserved tangential component of
all wavevectors, q’s are the normal (z) components of the wavevectors and θiso is the angle of the transmitted wavevector. An analogous
schematic of an incident e wave could be drawn. (c) An s or p wave: they are collinear, incident on the isotropic/anisotropic interface.

problem of light propagation through birefringent networks,
where solutions are given in principal axes’ coordinate frames
(Yeh 1979, 1982). These treatments leave the reader to
solve the eigenvalue problem associated with transforming to
a laboratory coordinate frame of experimental relevance. In
other studies only special ĉ-axis orientations are considered
(e.g. Yeh 1982) or multiple internal reflections are ignored
(e.g. Gu and Yeh 1993). Still other methods find solutions
at a single interface and are, due to their form, difficult
to extrapolate to multiple interfaces or multiple reflections
(Stamnes and Sherman 1977, Zhang and Caulfield 1996).
These existing theoretical studies are not ideally suited to
experimental applications; to be of utility, solutions must
be valid for arbitrary crystallographic orientations, incidence
angle and propagation direction, all measured in the laboratory
frame.

Our study approaches the problem from the perspective
of the specific experimental setting described above; a
wetted interface between two uniaxial crystals of arbitrary
orientation. We begin by revisiting the problem of plane wave
propagation in a uniaxial crystal using modal decomposition,
the approach by which Lekner (1991) determined the reflection
and transmission amplitudes for a plane wave entering an
anisotropic medium from an isotropic medium. The relevance
of Lekner’s (1991) important earlier work to our study requires
that we begin by reviewing his results in some detail. Here
we generalize those results in order to analyze the reverse
situation; where the wave passes from an anisotropic to an
isotropic region. We explicitly determine the reflection and
refraction amplitude coefficients in terms of the orientation of
the ĉ axis with respect to the laboratory axes and the optical
constants of the materials. Consequently, we are able to
solve for all of the relevant amplitude coefficients associated
with an isotropic layer sandwiched between uniaxial crystals.
This enables us to construct a matrix method to model the
Fabry–Perot effect of multiple reflections from the isotropic

layer. Extensions of the theory may also be applicable to more
general birefringent systems, but here it is of particular interest
at the interface between two grains in water ice. To illustrate
this we present clear examples of how the generalized theory
can be used in comparison with light reflection experiments.

2. Anisotropic optical theory

The problem of interest, illustrated schematically in figure 1(a),
is that of plane wave propagation in a three-layer system,
an isotropic layer (l2), bounded by uniaxial crystals (l1

and l3). Within the isotropic layer a wave’s polarization
can be decomposed in the usual way to be parallel (p)
and perpendicular (s) to the plane of incidence. In the
anisotropic material the principal components are parallel and
perpendicular to the optical axis of the material; these are
referred to as the extraordinary (e) and ordinary (o) modes. To
characterize the system completely we describe the plane wave
propagation within each layer, in addition to the reflection and
refraction at the boundaries between the media.

In the laboratory frame of reference the reflecting surfaces
are xy planes and z is the normal; the zx plane is chosen as
the plane of incidence. The electric field is denoted E =
[Ex, Ey, Ez]ei(qz+K x−ωt) . No y dependence exists due to
translational symmetry in the y direction. Continuity of the
tangential component of E demands that K is common in
all media while the normal component of the wavevector (q)
will depend on the state of polarization, propagation direction
and specific medium of propagation. For example, the value
of q corresponding to an ordinary ray propagating in the
−z direction is denoted by q−

o . The angular frequency is
ω, thereby defining a wavevector k = ω/c. Referring to
figure 1(b) for waves incident from an anisotropic media onto
an anisotropic/isotropic boundary reflected o and e waves
and collinear, transmitted s and p waves result. Conversely
(figure 1(c)), for waves incident from an isotropic media
onto an isotropic/anisotropic boundary o and e waves are
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transmitted and collinear s and p waves are reflected. For the
three-layer system, a given K determines unique qiso and θiso

values within the sandwiched isotropic layer. Alternatively, if
one was interested in a single angle of incidence in the uniaxial
crystal the problem could be solved iteratively using different
K values for the o and e polarizations.

2.1. Plane wave propagation within a uniaxial crystal

Lekner (1991) employed a normal mode analysis to study
wave propagation in uniaxial crystals. Using an orthogonal
coordinate transformation, expressed in terms of direction
cosines, he first expressed the dielectric tensor of a uniaxial
crystal in the laboratory frame of reference. He then explicitly
determined the ordinary (Eo) and extraordinary (Ee) electric
field vectors, in addition to the wavevector’s z components for
propagation within the crystal, in terms of K , k and the c-axis
orientation, specified by the unit vector ĉ = [α, β, γ ], where
α = cos θα, β = cos θβ and γ = cos θγ (see figure 1(a)):

Eo± = N±
o [−βq±

o , αq±
o − γ K , βK ], (1)

Ee± = N±
e [αq2

o−γ q±
e K , βεok2, γ (εok2−q±2

e )−αq±
e K ]. (2)

Here qo and qe are the normal components of the ordinary and
extraordinary wavevectors, εo = n2

o is the ordinary dielectric
constant, and No and Ne are normalization constants. The
expressions for the z component of the wavevectors are

q±
o = ±

√
εok2 − K 2 and (3)

q±
e = ±√

D − αγ K�ε

εo + γ 2�ε
, (4)

where in all cases the signs (±) correspond to the direction of
beam propagation with respect to the z axis. The quantity D,
in q±

e , is given by

D = εo[εe(εo + γ 2�ε)k2 − (εe − β2�ε)K 2], (5)

where εe is the extraordinary dielectric constant and �ε =
εe − εo.

Lekner’s (1991) analysis is general to plane wave propa-
gation within uniaxial materials and provides a foundation for
investigating reflection and refraction at interfaces with such
materials.

2.2. Lekner’s amplitude coefficients

Lekner (1991) goes on to calculate reflection and transmission
coefficients for s and p waves incident from an isotropic media
onto an isotropic/anisotropic interface. Because the tangential
components are preserved across the boundary he focuses on
the z dependence of the electric field. The z dependences of
the incident, reflected and transmitted electric fields for the s
polarization are

incident: E in = eiq+
isoz[0, 1, 0],

reflected: E ref = rspeiq−
isoz[cos θiso, 0,− sin θiso]

+ rsse
iq−

isoz[0, 1, 0],
transmitted: E tr = tsoeiq+

o z[Eo+
x , Eo+

y , Eo+
z ]

+ tseeiq+
e z[Ee+

x , Ee+
y , Ee+

z ].

(6)

At the interface the electromagnetic waves are subject to
the following boundary conditions implied by Maxwell’s
equations; continuity of Ex , Ey , ∂ Ex/∂z − iK Ez and ∂ Ey/∂z,
where the subscripts x, y, z refer to the vector components.
Applying these boundary conditions at the reflecting plane
(z = 0) leads to four equations that Lekner (1991) solved
for the four unknown intensity coefficients: rss, rsp, tso and tse.
In appendix A (A.1)–(A.4) we summarize those results with
small changes correcting apparent typographical errors in the
original publication. The incident, reflected and transmitted p
waves are

incident: E in = eiq+
isoz[cos θiso, 0,− sin θiso],

reflected: E ref = rppeiq−
isoz[cos θiso, 0,− sin θiso]

+ rpse
iq−

isoz[0, 1, 0],
transmitted: E tr = tpoeiq+

o z[Eo+
x , Eo+

y , Eo+
z ]

+ tpeeiq+
e z[Ee+

x , Ee+
y , Ee+

z ].

(7)

Again, application of the four boundary conditions at the
interface leads to four amplitude coefficients, rpp, rps, tpo and
tpe, also presented in appendix A (A.8)–(A.11).

When considering these results for transmission from
isotropic media to anisotropic media it is critical to realize
that, within the anisotropic material, the ray direction (i.e. the
Poynting vector) for the extraordinary mode differs from the
wavevector direction. This subtlety must be recognized to
verify simple test cases of reflection and refraction. For more
discussion regarding ray direction see Lekner (1991).

2.3. Anisotropic to isotropic interface

We analyze the reverse incidence, when o and e waves are in-
cident from an anisotropic media onto an anisotropic/isotropic
interface, in a similar manner. For the ordinary wave the z de-
pendences of the electric fields are

incident: E in = eiq+
o z[Eo+

x , Eo+
y , Eo+

z ],
reflected: E ref = rooeiq−

o z[Eo−
x , Eo−

y , Eo−
z ]

+ roeeiq−
e z[Ee−

x , Ee−
y , Ee−

z ],
transmitted: E tr = tose

iq+
isoz[0, 1, 0]

+ topeiq+
isoz[cos θiso, 0,− sin θiso].

(8)

Applying the boundary conditions to the ordinary wave at the
reflecting plane (z = 0) the above general expressions for the
incident, reflected and transmitted waves (8) yield a system of
four equations:

Eo+
x + roo Eo−

x + roe Ee−
x − top cos θiso = 0, (9)

Eo+
y + roo Eo−

y + roe Ee−
y − tos = 0, (10)

q+
o Eo+

x + q−
o roo Eo−

x + q−
e roe Ee−

x − q+
isotop cos θiso

− K (Eo+
z + roo Eo−

z + roe Ee−
z + top sin θiso) = 0, (11)

q+
o Eo+

y + q−
o roo Eo−

y + q−
e roe Ee−

y − q+
isotos = 0, (12)

and four unknown amplitude coefficients roo, roe, tos and top

for the ordinary wave. Solving this homogeneous system

3



J. Phys.: Condens. Matter 21 (2009) 195407 E S Thomson et al

of equations for the unknown amplitude coefficients provides
expressions for roo, roe, tos and top shown in their complete
form in appendix B (B.1)–(B.4).

The extraordinary wave’s intensity coefficients can be
found in a manner analogous to those for the ordinary wave.
Again we begin with expressions for the z dependence of the
extraordinary electric field:

incident: E in = eiq+
e z[Ee+

x , Ee+
y , Ee+

z ],
reflected: E ref = reeeiq−

e z[Ee−
x , Ee−

y , Ee−
z ]

+ reoeiq−
o z[Eo−

x , Eo−
y , Eo−

z ],
transmitted: E tr = tese

iq+
isoz[0, 1, 0]

+ tepeiq+
isoz[cos θiso, 0,− sin θiso].

(13)

We find solutions for the intensity coefficients of an incident
extraordinary beam (ree, reo, tes and tep) as we did previously;
see (B.5)–(B.8). Thus, the magnitudes of the derived amplitude
coefficients (B.1)–(B.8) are fully determined by completing the
normal mode analysis substitutions (1)–(5).

A limiting case provides some verification of the now
explicit amplitude coefficients for an incident o wave (B.1)–
(B.4) presented in appendix B. If the ĉ axis of the crystal is
in the plane of incidence and the incident o wave is entirely
perpendicularly polarized with respect to the plane of incidence
(i.e. [Eo

x, Eo
y, Eo

z ] = [0, 1, 0]) the reflection and transmission
amplitude coefficients reduce to the Fresnel equations for
perpendicular polarization (e.g. Born and Wolf 1965):

roo → rs → q+
o − q+

iso

q+
iso − q−

o

→ q+
o − q+

iso

q+
iso + q+

o

and (14)

tos → ts → q+
o − q−

o

q+
iso − q−

o

→ 2q+
o

q+
iso + q+

o

, (15)

remembering q+
o = −q−

o . As expected the other coefficients
(roe, top) vanish. In contrast, the extraordinary amplitude
coefficients can be modeled using isotropic theory for the p
polarization as long as it is recognized that this introduces an
effective index of refraction that is a function of incident angle
(Born and Wolf 1965):

neff = none√
n2

o sin θ ′
i + n2

e cos θ ′
i

. (16)

Here θ ′
i is the wavevector incident angle on the boundary,

and no and ne are the ordinary and extraordinary indices of
refraction. It also must be noted that within the crystal the
wavevector and electric field are not necessarily perpendicular.
Therefore, the angle used to compute the Fresnel coefficients
must be that of the Poynting vector (the ray direction), while
Snell’s law must be solved using the wavevector direction.
Figure 2 illustrates the agreement between the coefficients
for an extraordinary beam incident on a basal plane and the
isotropic Fresnel equations.

Now that we have investigated plane wave propagation
within each region and across each boundary, individually, we
return to the three-layer system. By collecting the expressions
for each of the relevant reflection and transmission amplitude
coefficients it is possible to construct a matrix formulation for
the propagation of light through the uniaxial network.

Figure 2. Extraordinary reflection and transmission coefficients for a
beam incident on the basal plane ([θα, θβ, θγ ] = [90◦, 90◦, 180◦])
compared with isotropic theory. Here the Fresnel equations for p
polarization solutions are used with neff (16). Circles are isotropic
theory and the points (inside circles) are the full theory. The line at
zero represents the cross term coefficients, which for this crystal
orientation are always zero. The physical constants used are
no = 1.1, ne = 1.2 and niso = 1.33.

3. Matrix method

Similar to the Jones matrix formalism, 2 × 2 matrices can
be used to describe reflection and refraction at interfaces
with uniaxial materials (e.g. Yeh 1982, Abdulhalim 1999).
Rather than rotation matrices, as in the Jones formulation, here
the matrix elements are the relevant amplitude coefficients.
The diagonal elements represent reflection or refraction of
like polarization, while the off-diagonal elements represent
the mixing of polarization states. Each interface is
represented by two independent matrices, one representing
reflection, the other refraction. For example, reflection at an
anisotropic/isotropic interface can be written in matrix form as

E1r =
(

roo reo

roe ree

) (
Eo

i
Ee

i

)
≡ R1Ei, (17)

where both the reflected wave, E1r ≡ (Eo
1r, Ee

1r), and
the incident wave, Ei ≡ (Eo

i , Ee
i ), will have ordinary

and extraordinary components. The reflection matrix R1

is composed of the amplitude coefficients representing the
interface which incorporate the properties of the anisotropic
material. The phase shift acquired by waves that travel some
distance through a uniaxial material can be accounted for using
diagonal propagation matrices, such as

P1 =
(

e−iδo 0
0 e−iδe

)
. (18)

The phase factors for the o and e waves are given by δo =
�o

√
q2

o + K 2 and δe = �e

√
q2

e + K 2, where �o and �e are
their respective path lengths within the crystal.

This matrix approach for treating different interfaces
substantially simplifies the analyses of light scattering
associated with layered materials. However, it is important
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to note, when modeling multiple layers and/or reflections,
that careful attention must be paid to maintaining a consistent
coordinate system. In section 4 we use this approach to
examine the specific example of an isotropic layer sandwiched
between anisotropic layers.

4. Anisotropic/isotropic/anisotropic
layering—application to grain boundaries

As discussed in section 1, a primary motivation of this study
is to better understand the phase behavior of ice and other
polycrystalline materials near their melting temperatures. One
proposed experimental method for characterizing the grain
boundary is to measure a reflected laser beam’s intensity as a
function of the thermodynamic variables: temperature, crystal
orientation and impurity concentration (Thomson et al 2005).
However, data gathered from such an experiment can only be
interpreted accurately with a theoretical model that includes the
anisotropy of the system. The combination of our results with
those of Lekner (1991) leads to precisely that type of model;
of an isotropic layer sandwiched between uniaxial crystals
(figure 3). While here we focus on ice and water to make a
connection to our experiment, the theoretical model applies to
any such geometry and anisotropy.

First we ignore any optical path length within the ice
crystals and simply consider the problem as if the incident
beam were generated and the reflected beam observed at the
interface of l1 and l2 (figure 3). Propagation away from the
interface can be accounted for using (18). Following the
matrix approach of section 3 the transmission and reflection
coefficients for each interface can be formulated:

T1 ≡
(

top tep

tos tes

)
, T2 ≡

(
t ′
po t ′

so
t ′
pe t ′

se

)
,

T3 ≡
(

tpo tso

tpe tse

)
,

(19)

R2 ≡
(

r ′
pp r ′

sp
r ′

ps r ′
ss

)
, R3 ≡

(
rpp rsp

rps rss

)
, (20)

and R1 remains as previously defined by (17). Primed
amplitude coefficients are used to denote those associated with
the l2/l3 boundary. For now we ignore the transmitted signal,
which does not apply to our experiment. For this model we
define the page to be in the xz plane with positive up (z) and
to the right (x), and are careful to ensure that the polarization
vector direction is consistent in each layer. Therefore, in
the unprimed amplitude coefficient solutions of T3 and R3,
obtained by solving (A.1)–(A.11), θiso is substituted by −θiso

and the negative normal mode solutions from (1)–(4) are used.
The waves of experimental interest are the initial and each

subsequent reflection (E1r, E2r , E3r , etc) and can be expressed
as a function of the original incoming field as was done in (17)
for the E1r term. Writing down the first few reflections the
pattern is evident:

E2r = T3 R2T1Eie
i(ωt−δ), (21)

E3r = T3 R2 R3 R2T1Eie
i(ωt−2δ), (22)

Figure 3. Schematic of multiple reflections off of a grain boundary
interface. Different interfaces are labeled with the relevant amplitude
coefficient matrices for reflection and transmission. The isotropic
film (l2) between the crystals, l1 and l3, has thickness d .

E4r = T3 R2 R3 R2 R3 R2T1Eie
i(ωt−3δ). (23)

These terms include the additional phase contributions arising
from the optical path length of each reflection internal to the
grain boundary, δ = 2knisod cos θiso (figure 3). Because the
multiple reflections occur within the isotropic medium, the
path length depends upon only one angle. Anisotropy within
the intervening layer would further complicate the situation
by introducing a second angle of transmission, resulting in
multiple possible paths within the layer. In the limit of the
superposition of a large number of such reflections, the total
reflected field (Etot

r ) becomes

Etot
r = E1r + E2r + E3r + · · · + Enr (24)

=
(

R1 +
∞∑

n=1

T3 R2 R̄n−1e−inδT1

)
Eie

iωt (25)

where R̄ ≡ R3 R2. This expression contains a geometric series
of matrices (e.g. Strang 1993) and as such can be rewritten,
using the identity matrix I , as

Etot
r = [R1 + T3 R2e−iδ(I − R̄e−iδ)−1T1]Eie

iωt . (26)

This substitution is valid as long as the absolute values of the
eigenvalues of R̄ are less than 1. The limiting case of total
reflection with no anisotropy, R̄ = ( 1 0

0 1

)
, illustrates that any

other situation will lead to smaller eigenvalues, less than 1. The
bracketed expression in (26) will remain valid for reflection in
any geometry that includes an isotropic sandwich. We call this
the n-reflection matrix (M ref

n ):

M ref
n =

⎛

⎜⎜
⎝

[rooei2δ + (ζ4tpo + ζ5tso − η1roo)eiδ

+ η2(ζ3top + η3roo + η4tos)]
[reoei2δ + (ζ1tpo + ζ2tso − η1reo)eiδ

+ η2(ζ3tep + η3reo + η4tes)]
[roeei2δ + (ζ4tpe + ζ5tse − η1roe)eiδ

+ η2(ζ6top + η3roe + ζ7tos)]
[reeei2δ + (ζ1tpe + ζ2tse − η1ree)eiδ

+ η2(ζ6tep + η3ree + ζ7tes)]

⎞

⎟⎟
⎠

× 1

(ei2δ − η1eiδ + η2η3)
. (27)

In (27) the variable quantities within the matrix elements are
given in appendix C. In an experimental system with a beam

5
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Figure 4. Theory for reflected intensity ratio (IR) from the basal planes, [θα, θβ, θγ ] = [90◦, 90◦, 0◦] of each crystal, in an ice–water–ice
sandwich. Intensity ratio is plotted for varying water layer thicknesses, d = 1, 10 and100 nm. In both cases solid curves correspond to
reflected o polarization and dashed curves to e polarization. Curves asymptote at the approximate critical angle for total reflection within the
water layer (≈80◦). (a) The incident beam is o polarized [E o

i , E e
i ] = [1, 0]. Note that in this geometry, for purely ordinary incidence, the

extraordinary reflected component is always zero. (b) The incident beam is e polarized [E o
i , E e

i ] = [0, 1]. Again there is no polarization
mixing.

propagating through a crystal, the propagation matrices (18)
associated with the optical path length will modify the final
result.

This is the extent to which we can easily pursue the
problem algebraically. Calculating an experimentally useful
value, such as the reflected flux density (i.e. Ir = Etot

r ·
Etot∗

r /2), involves taking the complex conjugate of Etot
r and

solving for the reflected intensity by working through the
full algebraic expressions. This quickly becomes quite
cumbersome as can be seen from the full expression in (27)
for M ref

n but is easily facilitated by a symbolic or matrix-
based mathematical computer interface. Examples of intensity
ratio (i.e. IR = Etot

r · Etot∗
r /Ei · E∗

i ) are plotted for
reflection from a basal plane, as a function of incidence
angle (figure 4) and as a function of grain boundary film
thickness (figure 5). For other orientations plots of intensity
ratio illustrate some interesting characteristics. For special
crystallographic orientations (figures 4 and 6) no polarization
mixing takes place. However, when a particular polarization
state within the crystal is parallel with the p polarization in
the isotropic layer, a Brewster-like angle exists for the system.
In figure 4 this Brewster angle is present for the e polarized
wave, and conversely, in figure 6 the o polarized incident
beam has an angle of zero reflection. For systems with less
crystallographic symmetry (figure 7) the mixing of polarization
states is clearly important. An examination of intensity
ratio as a function of ĉ-axis orientation (figure 8) illustrates
the relative importance of polarization mixing and points
where symmetries preclude coupling. Theoretical curves
for experimentally measured crystallography (figure 9) show
substantial polarization mixing, yet for certain orientations and
polarizations effective Brewster-like angles emerge.

A nearly identical analysis can be done in order to
calculate the theoretically transmitted fields and intensity

Figure 5. Theory for reflected intensity ratio (IR) from the basal
planes, [θα, θβ, θγ ] = [90◦, 90◦, 0◦] of each crystal, in an
ice–water–ice sandwich as a function of water layer thickness d , at
an incidence angle of 55◦. The solid curve corresponds to the
reflection of an incident wave of purely o polarization
[Eo

i , E e
i ] = [1, 0] and the dashed curve to the reflection of an

incident wave of e polarization [E o
i , E e

i ] = [0, 1].

ratios associated with an isotropic layer sandwiched between
anisotropic media. The infinite sum is simply rewritten in
terms of the transmitted waves:

ETt =
(

T2

∞∑

n=0

(R̄e−iδ)nT1

)
Eie

iωt (28)

= [T2(I − R̄e−iδ)−1T1]Eie
iωt , (29)

where we can label the bracketed portion of the expression the

6
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Figure 6. Theory for reflected intensity ratio (IR) from an ice–water–ice sandwich. [θ1
α, θ1

β, θ1
γ ] = [90◦, 0◦, 90◦] and

[θ2
α, θ2

β, θ2
γ ] = [90◦, 90◦, 0◦]. Intensity ratio is plotted for varying water layer thicknesses, d = 1, 10 and100 nm. In both cases solid curves

correspond to reflected o polarization and dashed curves to the e polarization. (a) The incident beam is o polarized [E o
i , E e

i ] = [1, 0]. (b) The
incident beam is e polarized [E o

i , E e
i ] = [0, 1]. No polarization mixing occurs in either case.

Figure 7. Theory for reflected intensity ratio (IR) from an ice–water–ice sandwich. [θ1
α, θ1

β, θ1
γ ] = [45◦, 45◦, 90◦] and

[θ2
α, θ2

β, θ2
γ ] = [90◦, 90◦, 0◦]. Intensity ratio is plotted for varying water layer thicknesses, d = 1, 100 and 200 nm. In both cases solid curves

correspond to reflected o polarization and dashed curves to the e polarization. (a) The incident beam is o polarized [E o
i , E e

i ] = [1, 0]. (b) The
incident beam is e polarized [E o

i , E e
i ] = [0, 1]. Polarization mixing occurs in both cases.

n-transmission matrix:

M tr
n =

( [topt ′
po + tost ′

so]ei2δ + [η5t ′
po + η6t ′

so]eiδ

[topt ′
pe + tost ′

se]ei2δ + [η5t ′
pe + η6t ′

se]eiδ

[tept ′
po + test ′

so]ei2δ + [η7t ′
po + η8t ′

so]eiδ

[tept ′
pe + test ′

se]ei2δ + [η7t ′
pe + η8t ′

se]eiδ

)

× 1

(ei2δ − η1eiδ + η2η3)
. (30)

Again the variable quantities within the matrix elements are
given in appendix C. Ensuing calculations follow in analogy
to what we have previously shown for reflection. Whereas for
our experimental system this is not of interest, there may be

experimental systems in which the transmitted wave would be
the appropriate observable.

5. Conclusions

We have derived explicit expressions for the reflection
and refraction amplitude coefficients for ordinary and
extraordinary polarized electromagnetic waves incident upon
an interface between a uniaxially anisotropic and an isotropic
material. The orientation of the optical axes may be arbitrary
with respect to a laboratory frame of reference. Furthermore,
the formulae are valid for the full range of incidence angles.

7
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Figure 8. Theory for reflected intensity ratio (IR) from an ice–water–ice sandwich for multiple values of θiso. The ĉ-axis orientation of l1 is
rotated about the z axis. The angle, ϕĉ, is the projection of ĉ onto the xy plane with θ1

γ = 45 held constant. Water layer thickness is also a
constant, d = 100 nm, and [θ2

α, θ2
β, θ2

γ ] = [90◦, 90◦, 0◦]. Again solid curves correspond to reflected o polarization and dashed curves to the e
polarization. (a) The incident beam is o polarized [E o

i , E e
i ] = [1, 0]. (b) The incident beam is e polarized [E o

i , E e
i ] = [0, 1]. In both cases the

curves for ϕĉ = 180–360 are symmetric with what is shown.

Figure 9. Theory for reflected intensity ratio (IR) from an ice–water–ice sandwich grown in an experimental ice growth cell:
[θ1

α, θ1
β, θ1

γ ] = [103, 131, 45] and [θ2
α, θ2

β, θ2
γ ] = [89.7, 88.5, 1.5]. Intensity ratio is plotted for varying water layer thicknesses, d = 1, 100 and

200 nm. In both cases solid curves correspond to reflected o polarization and dashed curves to the e polarization. (a) The incident beam is
o polarized [E o

i , E e
i ] = [1, 0]. (b) The incident beam is e polarized [E o

i , E e
i ] = [0, 1]. In both cases the mixing of polarization states is clear.

Combining these results with Lekner’s (1991) earlier work
allows us to model a three-layer system of arbitrarily oriented
uniaxial crystals sandwiching an isotropic layer. A Jones-like
matrix formulation is used to treat the electromagnetic wave
propagation and the reflection and transmission matrices for
an isotropic layer sandwiched between anisotropic materials
are explicitly determined. Light scattering from the interfaces
between two grains in polycrystalline ice is an area with wide-
ranging implications in astrophysical and geophysical settings,
but also serves as an ideal, transparent analogue for many
materials (Dash et al 2006). Comparable systems may be
present in layered ceramics (Luo and Chiang 2008), biological
structures (Parsegian 2006) or experimental tests of the theory

of dispersion forces in such layered geometries (van Benthem
et al 2006). At present we are engaged in a long term
experimental test of the theoretical framework described here
(Thomson et al 2005). It is hoped that, as a consequence, those
interested in the structure of grain boundaries in other systems
can make use of both the framework laid out in this paper and
the incipient experimental findings.
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Appendix A

Here we summarize Lekner’s (1991) results for the reflection
and transmission coefficients for s and p waves incident onto an
isotropic/anisotropic interface. We have made small changes
where apparent typographical errors were made in the original
manuscript:

rss = (q+
iso − q+

e )Al Ee+
y − (q+

iso − q+
o )Bl Eo+

y

Dl
, (A.1)

rsp = 2(q+
iso cos θiso + K sin θiso)(Al Ee+

x − Bl Eo+
x )

Dl
(A.2)

tso = −2q+
iso Bl

Dl
and (A.3)

tse = 2q+
iso Al

Dl
, (A.4)

where θiso is the incident angle in the isotropic layer. The
subscripts p, s, o and e denote the particular amplitude
coefficient, the q’s are the wavevector’s z components and

Al = (q+
o + q+

iso + K tan θiso)Eo+
x − K Eo+

z , (A.5)

Bl = (q+
e + q+

iso + K tan θiso)Ee+
x − K Ee+

z , (A.6)

Dl = (q+
iso + q+

e )Al Ee+
y − (q+

iso + q+
o )Bl E

o+
y . (A.7)

Equation (A.4) has been altered after Lekner (1992) where
he pointed out a misprint of the sign in Lekner (1991). The
coefficients for the incident p wave are

rpp = 2(q+
iso cos θiso + K sin θiso)Fl

Dl cos θiso
− 1, (A.8)

rps = 2(q+
iso cos θiso + K sin θiso)(q+

e − q+
o )Eo+

y Ee+
y

Dl
, (A.9)

tpo = 2(q+
iso cos θiso + K sin θiso)(q

+
iso + q+

e )Ee+
y

Dl
and

(A.10)

tpe = −2(q+
iso cos θiso + K sin θiso)(q

+
iso + q+

o )Eo+
y

Dl
, (A.11)

where Fl = [(q+
iso + q+

e )Eo+
x Ee+

y − (q+
iso + q+

o )Eo+
y Ee+

x ].
Here (A.8) differs from Lekner (1991), where we infer there
was a typographical error.

Appendix B

The full expressions for the amplitude coefficients associated
with the ordinary wave at an interface with an isotropic
material are

roo = {Eo+
y (q+

iso − q+
o )[Ee−

x (A − q−
e ) + K Ee−

z ]
− Ee−

y (q+
iso − q−

e )[Eo+
x (A − q+

o ) + K Eo+
z ]}{B}−1, (B.1)

where, B ≡ Ee−
y (q+

iso−q−
e )[Eo−

x (A−q−
o )+K Eo−

z ]−Eo−
y (q+

iso−
q−

o )[Ee−
x (A − q−

e ) + K Ee−
z ] and A ≡ q+

iso + K tan θ+
iso,

roe = {Eo−
y (q+

iso − q−
o )[Eo+

x (A − q+
o ) + K Eo+

z ]
− Eo+

y (q+
iso − q+

o )[Eo−
x (A − q−

o ) + K Eo−
z ]}{B}−1. (B.2)

tos = B−1[Eo+
y {Ee−

y (q+
o − q−

e )[Eo−
x (A − q−

o ) + K Eo−
z ]

− Eo−
y (q+

o − q−
o )[Ee−

x (A − q−
e ) + K Ee−

z ]}
+ Ee−

y Eo−
y (q−

e − q−
o )[Eo+

x (A − q+
o ) + K Eo+

z ]] (B.3)

top = (B cos θiso)
−1{Eo−

y (q+
iso − q−

o )[−Ee−
x Eo+

x (q+
o − q−

e )

+ K (Ee−
x Eo+

z − Eo+
x Ee−

z )] + Ee−
y (q+

iso − q−
e )

× [Eo−
x Eo+

x (q+
o − q−

o ) + K (Eo−
z Eo+

x − Eo−
x Eo+

z )]
+ Eo+

y (q+
iso − q+

o )[Ee−
x Eo−

x (q−
o − q−

e )

+ K (Eo−
x Ee−

z − Ee−
x Eo−

z )]}. (B.4)

For an incident wave polarized in the extraordinary
direction the coefficients have a similar form:

ree = {Eo−
y (q+

iso − q−
o )[Ee+

x (A − q+
e ) + K Ee+

z ]
− Ee+

y (q+
iso − q+

e )[Eo−
x (A − q−

o ) + K Eo−
z ]}{B}−1 (B.5)

reo = {Ee+
y (q+

iso − q+
e )[Ee−

x (A − q−
e ) + K Ee−

z ]
− Ee−

y (q+
iso − q−

e )[Ee+
x (A − q+

e ) + K Ee+
z ]}{B}−1 (B.6)

tes = B−1[Ee+
y {Ee−

y (q+
e − q−

e )[Eo−
x (A − q−

o ) + K Eo−
z ]

− Eo−
y (q+

e − q−
o )[Ee−

x (A − q−
e ) + K Ee−

z ]}
+ Ee−

y Eo−
y (q−

e − q−
o )[Ee+

x (A − q+
e ) + K Ee+

z ]] (B.7)

tep = (B cos θiso)
−1{Ee−

y (q+
iso − q−

e )[Ee+
x Eo−

x (q+
e − q−

o )

+ K (Ee+
x Eo−

z − Eo−
x Ee+

z )] + Eo−
y (q+

iso − q−
o )

× [−Ee−
x Ee+

x (q+
e − q−

e ) + K (Ee+
z Ee−

x − Ee+
x Ee−

z )]
+ Ee+

y (q+
iso − q+

e )[Ee−
x Eo−

x (q−
o − q−

e )

+ K (Eo−
x Ee−

z − Ee−
x Eo−

z )]}. (B.8)

Appendix C

Although any computation utilizing the presented theory is
most efficiently done utilizing linear algebra, the variable
quantities that compose the elements of the n-reflection
matrices (M ref

n and M tr
n ) are presented here for completeness:

η1 ≡ R̄11 + R̄22 (C.1)

η2 ≡ r ′
psr

′
sp − r ′

ppr ′
ss (C.2)

η3 ≡ rpsrsp − rpprss (C.3)
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η4 ≡ rpptso − rsptpo (C.4)

η5 ≡ R̄12tos − R̄22top (C.5)

η6 ≡ R̄21top − R̄11tos (C.6)

η7 ≡ R̄12tes − R̄22tep (C.7)

η8 ≡ R̄21tep − R̄11tes (C.8)

ζ1 ≡ r ′
pptep + r ′

sptes (C.9)

ζ2 ≡ r ′
pstep + r ′

sstes (C.10)

ζ3 ≡ rsstpo − rpstso (C.11)

ζ4 ≡ r ′
pptop + r ′

sptos (C.12)

ζ5 ≡ r ′
pstop + r ′

sstos (C.13)

ζ6 ≡ rsstpe − rpstse (C.14)

ζ7 ≡ rpptse − rsptpe (C.15)

where the subscripted R̄s are the matrix elements of the
previously defined R̄:

R̄ ≡ R3 R2 =
(

r ′
pprpp + r ′

psrsp rppr ′
sp + rspr ′

ss
r ′

pprps + r ′
psrss rpsr ′

sp + r ′
ssrss

)
. (C.16)
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